Introducing Performance Engineering by means of Tools and

Practical Exercises

Alexander Ufimtsev, Trevor Parsons, Lucian M. Patcas,
John Murphy and Liam Murphy

Performance Engineering Laboratory,
School of Computer Science and Informatics, University College Dublin, Ireland
{alexu,trevor.parsons,lucian.patcas,j.murphy,liam.murphy } Qucd.ie

Abstract

Many software engineers complete their educa-
tion without an introduction to the most basic
performance engineering concepts. IT special-
ists need to be educated with a basic degree
of performance engineering knowledge, so they
are aware of why and how certain design and
development decisions can lead to poor perfor-
mance of the resulting software systems. To
help address this need, the School of Computer
Science and Informatics at University College
Dublin offered a final year undergraduate/first
year postgraduate module on ”Performance of
Computer Systems” in Autumn 2005. In this
paper we document how performance engineer-
ing was introduced to the students through
practical exercises, and how these exercises re-
late to industry problems.

1 Introduction
Software languages and frameworks have devel-

oped significantly since their early days. They
have become more abstract and developers no

Copyright (© 2006 Performance Engineering Lab,
School of Computer Science and Informatics, University
College Dublin. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

longer need to concern themselves with lower
level issues such as resource usage. An example
of this can be seen in modern languages (Java,
C+#) that provide garbage collection facilities
freeing developers from the task of having to
manage memory which had typically been com-
plex and time consuming exercise. This is
even more obvious with enterprise level soft-
ware frameworks (J2EE, .NET), whereby the
framework can be expected to handle complex
underlying issues such as security, persistence,
performance and concurrency to name but a
few. Freeing developers from having to worry
about what is happening under the hood allows
them to concentrate more of their efforts on
developing the functionality of a system. How-
ever, a downside of this trend is that devel-
opers become less familiar with the mechanics
of the underlying system and, as a result, can
make decisions that have an adverse effect on
the system. This is especially evident in the
area of performance of systems, where projects
often fail to deliver in time functional systems
which meet their performance requirements,
fact that leads to major project delays and sub-
sequently higher development and maintenance
costs [5]. Two major factors contribute to this
fact. First, many developers do not have an
understanding for the basic concepts of perfor-
mance engineering. This is hardly surprising,



since many software engineers complete their
education without an introduction to the most
basic performance engineering concepts. As a
result, it is common that they are unaware of
the performance implications of many decisions
taken during the design and implementation of
a system. Second, since many developers do
not have an understanding for performance en-
gineering, often they believe that system per-
formance can be addressed at the end of devel-
opment cycle after a system has been designed,
implemented, functionally tested and deployed.
This common misconception often leads devel-
opers to take the opinion that performance is
a matter of "production tuning” that merely
involves tweaking different system parameters
at the end of the development cycle. It is more
often the case however that performance issues
have a deeper structural nature. Consequently,
it is common that a major rework of the system
is required to meet performance goals leading
to expensive delays at the end of the project.

To address the above problems, developers
need to be educated with a basic degree of per-
formance engineering knowledge so that they
are aware of why and how certain design and
development decisions can lead to poor perfor-
mance of the resulting software systems. To
help address this need, the School of Com-
puter Science and Informatics at University
College Dublin offered a final year undergrad-
uate/first year postgraduate module on ”Per-
formance of Computer Systems” in Autumn
2005. The course introduced a basic theoretical
framework of Performance Engineering, while
the practical work for this course consisted of
exercises to allow students to develop an under-
standing of the performance aspects of industry
scale software systems.

In this report we detail certain aspects of
this course. We focus on the performance tools
used, paying particular attention to two rel-
atively new performance tools, AdaptiveCells
and PredictorV. We document how these tools
were used to educate the students on perfor-
mance engineering through practical exercises,
and how the exercises relate to industry prob-
lems. Section 2 presents the performance engi-
neering concepts that were introduced to stu-
dents. Section 3 describes the main features
of the tools used for the practical work, and

motivates their choice. Section 4 describes the
practical assignments and steps that the stu-
dents followed to conduct a complete analysis
of a sample J2EE application. Sections 5 and 6
present our observations and conclusions upon
the course aspects presented in this report.

2 Performance Engineering

The performance engineering concepts we
present in this section relate to the performance
metrics, as well as the software performance en-
gineering (SPE) methodology that the students
followed for their practical work.

We introduced to students the most common
performance metrics used to characterise the
performance behaviour of a system: throughput
(the number of requests the system can han-
dle in a given time period); response time (the
temporal delay between the moment the sys-
tem receives a request and the moment it ful-
fils that request); latency (the temporal delay
between the receiving of an event and the sys-
tem reaction to that event); capacity (the max-
imum load the system can take while meeting
its throughput, response time, and latency re-
quirements). In addition to these performance
metrics, the performance behaviour of a system
can as well be characterised by resource utili-
sation (e.g. CPU or memory consumption).

The methodology that the students followed
for the performance evaluations they carried
out was inspired from the SPE guideline pre-
sented in [2]. That is, performance require-
ments, which define the values expected from
a functioning system, must be considered from
early stages in the software development cycle
and tracked through the entire process. There-
fore, the students carried out performance test-
ing (to address the performance problem at the
testing and maintenance stages) and perfor-
mance modelling (design stage) of sample J2EE
internet applications.

Usually in the testing stage, functional test-
ing is performed before performance tests in
order to catch the errors in the application to
be tested that are not caused by performance
issues. Thus, functional testing tries to elimi-
nate non-performance problems before any per-
formance testing is conducted.



Performance testing deals with verifying
whether the system meets its performance re-
quirements under various workloads. The
workload of a system denotes how many users
the system can handle at any given time. In
order to allow the performance analysis of the
system, various workloads are generated and
the system performance behaviour under these
various workloads is recorded in the load test-
ing phase. Usually, load testing involves gener-
ation of simulated requests to the system using
load generation tools (see Section 3.1). Per-
formance testing can also involve finding the
highest workload the system can take while still
fulfilling its requirements, that is stress testing
the system. Performance optimisations can be
tried in order to correct some of the problems
discovered during performance testing. Load
and stress testing treat the system as a ”black
box” to whose internal structure test engineers
do not have any insights into.

Performance modelling is a complementary
method to building prototypes or simulating
the system behaviour. During the system de-
sign, this method provides answers to questions
like "How does the system scale up?”, ”What
is the capacity that allows the prescribed qual-
ity of service for expected workloads?”, ” Which
components of the system are bottlenecks?”, or
”Which components are more sensitive to vari-
ations?”. Performance modelling makes use of
discrete event simulation (e.g. workload gener-
ation tools) to generate usage scenarios of the
system, and profiling to capture the interac-
tions between system components correspond-
ing to those usage scenarios and to record the
performance metrics. The data obtained from
profiling constitutes the performance model of
the system. The analysis of this model helps
identifying bottleneck or sensitive components.
This analysis also allows for capacity planning,
which aims to ensure that sufficient capacity is
available so that the system can cope with in-
creasing demand. Performance modelling can
help developers understand how the compo-
nents they are working on contribute to the
performance of the whole system. Performance
modelling is a ”white box” approach, develop-
ers and system designers having an insight into
the internal structure of the system.

3 Tools

Students conducted performance testing and
modelling of sample J2EE applications that
were generated with the AdaptiveCell' tool.
They carried out the performance testing us-
ing the JMeter? load generation tool, and the
performance modelling using PredictorV?3. This
section introduces these tools and motivates
their choice.

3.1 JMeter

JMeter is a tool for workload generation and
performance measurements. It can be used to
simulate a heavy concurrent load on a J2EE
application and to analyse the overall perfor-
mance under various load types. It also al-
lows for a graphical analysis of the performance
metrics (e.g. throughput, response time) mea-
sured.

3.2 AdaptiveCells

AdaptiveCells is a novel tool that allows for the
development of complex artificial J2EE testbed
applications without requiring a single line of
code. These applications can be used for a
number of different purposes, such as perfor-
mance testing, middleware infrastructure test-
ing and even for the creation of working J2EE
applications. The initial learning curve for
writing J2EE applications is often prohibitively
high and means that even developing simple
test cases can be a major effort. AdaptiveCells
solves this problem by allowing for the creation
of working (complex) J2EE applications with-
out having to write the code. The testbed ap-
plications generated with AdaptiveCells have a
fully controllable behaviour at runtime. By se-
lecting the appropriate configurations, testers
and developers can replicate how resources
such as CPU and memory are consumed by
the different parts of the application. In fact,
AdaptiveCells goes further by allowing for the
emulation of performance bugs (e.g. memory
leaks) which often occur in real systems. The
applications generated can also be configured

Thttp://adaptivecellsj.sourceforge.net
2http://jakarta.apache.org/jmeter
Shttp://www.crovan.com



to throw exceptions at certain points. These
characteristics of AdaptiveCells represent real
advantages not only in learning environments
such as the one discussed in this report, but
in the development of real-world component-
based software systems as well. For example,
applications generated with AdaptiveCells can
be used to compare the performance of real
application servers, or, in the area of middle-
ware infrastructure, they can be used for test-
ing problem determination tools [3] or monitor-
ing tools such as COMPAS [1].

3.3 PredictorV

PredictorV is a modelling and simulation tool
that aims to help IT architects and developers
solve performance problems in enterprise J2EE
based systems by predicting their performance
early in the design cycle. PredictorV is an
Eclipse-based product available in form of both
a plug-in and standalone application [4]. The
tool offers a framework for performance moni-
toring, modelling and prediction of component-
based systems. The aim of the framework is
to capture the information from a system and
automatically generate a performance model.
Then the performance model is used to deter-
mine quickly where the performance problems
are in the system. One advantage of this ap-
proach is that it reduces the time and skill re-
quired to build a model, because information
to build the model itself is captured directly
from the system. Another advantage is that as
much of the process as possible is automated,
so it reduces the risk of human errors being
added into the model. The tool comprises of
three modules: a module to monitor the sys-
tem, a module to model the transaction flow
on that system, and a module to predict the
performance of the system.

Monitoring module The monitoring mod-
ule tries to collect enough information from a
system under test so that a predictive model of
the system can be built. In order to so, it needs
structure information (what the system does)
and resource information (how much resource
the system uses) for each business transaction
that occurs in the usage scenarios employed for
testing. The best method for collecting this

information in a Java-based system is to use
profiling. The profiler makes use of the Java
Virtual Machine Profiler Interface (JVMPI) to
collect information relating to the current state
of the JVM, such as memory and CPU infor-
mation.

Modelling module The modelling module
is responsible for displaying the call graph for
each business transaction that has been col-
lected using the monitoring module. UML
Event Sequence Diagrams notation is used to
display this call graph. The sequence diagrams
in PredictorV show the ordered sequence of
events that happen inside the application as it
services a user request, and are annotated with
profile data showing the CPU and memory that
are consumed.

Prediction module The prediction module
takes the UML models and detects perfor-
mance bottlenecks (the InSight analysis level),
identifies ways of correcting these bottlenecks
(MoreSight), assesses capacity planning under
different hardware configurations (ForeSight),
and evaluates performance for different usage
scenarios (ClearSight).

4 Practical Exercises

This section describes the tasks that the stu-
dents had to accomplish for their practical as-
signments, as well as the steps they followed in
order to conduct a complete performance anal-
ysis of a sample J2EE application.

The practical assignments were intended
to imitate real-life development environments.
For this purpose, the students formed groups
and each group played the role of a Quality
Assurance (QA) team in a software develop-
ment company. The tasks* of each team were
to conduct performance testing and modelling
of a sample J2EE application. The sample
applications comprised of seven components
and ten possible configurations (different in-
teraction scenarios between components), and
were generated with AdaptiveCells (see Sec-
tion 3.2). We introduced randomly some per-

4The assignments can be found online at
http://floatingl.ucd.ie/comp4015



formance problems likely to occur in real ap-
plications, such as memory leaks or excessive
resource usage [6], into the applications tested
by students. Each QA team submitted in the
end a report that contained two parts: an ex-
ecutive summary of their work to the manage-
rial staff, and a detailed informative report to
the developers. To accomplish their tasks, stu-
dents had to follow the methodology described
in Section 2.

Functional testing Students had first to
perform functional testing of their application
to eliminate the configurations which were ob-
viously not working properly. They had to
identify whether the cause of the problem was
indeed a performance related problem (using
garbage collection and debug information) or a
problem of a different nature.

Performance testing Once the functional
tests were performed, students used the JMeter
load generation tool (see Section 3.1) to simu-
late a workload on the application. The com-
plexity of this exercise lay in the requirement
that the students construct a realistic workload
on the application. Students had to decide
upon common usage scenarios of the applica-
tion at hand. It was explained to the students
that testing systems with an unrealistic work-
load would produce unreliable results, which
is not acceptable in real-life situations. After
generating a realistic workload, students tested
their system by gradually increasing the num-
ber of clients. They collected both the through-
put and response time, and performed an anal-
ysis of the variation of these metrics against the
number client requests. Students had to notice
the trend in the system behaviour under differ-
ent workloads (load testing) and the number
of clients threshold for which the throughput
started to decrease and response time started
to increase (stress testing).

Performance optimisations The next step
included various optimisation techniques that
would lead to improved application perfor-
mance. J2EE platform offers variety of levels
where performance can be tweaked, including
Java Virtual Machine (JVM) layer, Applica-
tion Server (AS) layer, Operating System (OS)

layer, hardware, and application itself. How-
ever, only JVM and AS layers were considered
in the scope of the course. After a few ini-
tial hints students were asked to use available
resources, including the Internet, to find and
experiment with performance of Sun Microsys-
tem JVM and JBoss AS®. They were also asked
to explain why certain parameter would result
in better, or worse application performance.

Application profiling Until this step, stu-
dents were using a ”blackbox” approach to
the application they were testing. They did
not have any insights into how the applica-
tion was working internally, and only used the
external functional interfaces to extract be-
havioural and performance information. Suc-
cessful modelling, on other hand, requires a
deep inside knowledge of the application to be
modelled. Therefore, students extracted infor-
mation about the inner logic of the applica-
tion using the profiler of PredictorV (see Sec-
tion 3.3). Once extracted, these scenarios could
be easily visualised in PredictorV in the form
of sequence diagrams. Profiled data also con-
tained information about resource utilisation.

Performance modelling Students used the
profiled usage scenarios, augmented with re-
source utilisation, together with the data they
extracted in the load and stress testing steps
to build a model of their application in Predic-
torV. The model consisted of specified hard-
ware topology (network devices, application
server, and database server) and all the nec-
essary data (variations of performance metrics
with workload, resource utilisation), in order
to create an environment that mimics a real
system. Students used this model for various
types of performance simulations and predic-
tions: to determine system performance on al-
ternative hardware configurations; to provide
hardware estimates for doubling and tripling
the throughput (capacity planning); to analyse
the design of the application in order to identify
performance antipatterns [2], which are com-
mon design mistakes.

Shttp://www.jboss.com/products/jbossas



5 Observations

The course feedback received from the stu-
dents was analysed at the end of the course
through an anonymous system. The feedback
was mainly positive with the one exception
being the amount of time and effort required
to test their application correctly. Most of
the students had to conduct the performance
tests a few times, mainly because many pa-
rameters had to be taken into account to run
the test correctly (e.g. performing load and
stress testing, measurements, profiling, optimi-
sations). The student felt that while the "help
from lab demonstrators” was good to very good
the ”computer facilities” were only fair. This
would be mainly due to the number of applica-
tions that they were required to master in the
course. Most students agreed that they put a
”lot of effort” into this course, and that it was
”interesting” and a ”clear link between the lec-
tures and the practicals”.

All the reports that the students produced
were read by three staff members and about
25% of the students were subjected to an inter-
view to ensure the quality of the material pre-
sented. The students scored well in this course,
with it being the second highest scoring course
over about ten courses that were held for that
cohort of students. For example over 80% of
the students would have got a second class hon-
ours grade one or higher in this course.

6 Conclusions

In this paper we present our experience in in-
troducing performance engineering concepts to
university students through practical exercises.
These exercises can easily be integrated as part
of performance engineering solution in a real in-
dustry environment. We give details on a num-
ber of tools that we used for the practical part
of the course. In particular we focus on the test
bed application, AdaptiveCells, and modelling
and simulation tool, PredictorV. However one
of the key lessons from this exercise was the
need for intensive laboratory support, which
would limit the number of applications and the
scale of the problems that could be addressed
in a single course.

References

[1] Mos A. A Framework for Adaptive Mon-
itoring and Performance Management of
Component-Based Enterprise Applications.
PhD thesis, Dublin City University, Ire-
land, 2004.

[2] Smith C.U. and Williams L. G. Perfor-
mance Solutions: A Practical Guide to Cre-
ating Responsive, Scalable Software. Addi-
son Wesley, 2002.

[3] Chen M. et al. Pinpoint: Problem determi-
nation in large, dynamic, internet services.
In Proc. Int. Conf. on Dependable Systems
and Networks (IPDS Track), 2002.

[4] Murphy J. Whitepaper: Peeling the lay-
ers of the 7performance onion”.
http://crovan.com/download/
crovan_whitepaper.pdf.

[6] Musich P. Survey questions Java App reli-
ability. http://www.eweek.com/
article2/0,1895,1388603,00.asp.

[6] Haines S. Solving common Java EE per-
formance problems.
http://www.javaworld.com/javaworld/
jw-06-2006/jw-0619-tuning.html.



